International Journal of
Computer Sciences and Engineering

Scholarly Peer-Reviewed, and Fully Refereed Scientific Research Journal
Nano- Wire structure optimization to achieve high sensibility and frequency response
Nano- Wire structure optimization to achieve high sensibility and frequency response
M.R. Ghahri1 , S. SheikhHasani2

Section:Research Paper, Product Type: Journal Paper
Volume-5 , Issue-3 , Page no. 16-19, Mar-2017

Online published on Mar 31, 2017

Copyright © M.R. Ghahri, S. SheikhHasani . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 
View this paper at   Google Scholar | DPI Digital Library
  XML View PDF Download  
Citation

IEEE Style Citation: M.R. Ghahri, S. SheikhHasani, “Nano- Wire structure optimization to achieve high sensibility and frequency response”, International Journal of Computer Sciences and Engineering, Vol.5, Issue.3, pp.16-19, 2017.

MLA Style Citation: M.R. Ghahri, S. SheikhHasani "Nano- Wire structure optimization to achieve high sensibility and frequency response." International Journal of Computer Sciences and Engineering 5.3 (2017): 16-19.

APA Style Citation: M.R. Ghahri, S. SheikhHasani, (2017). Nano- Wire structure optimization to achieve high sensibility and frequency response. International Journal of Computer Sciences and Engineering, 5(3), 16-19.
Downloads (102)     Full view (121)
           
Abstract :
In this paper the structure of Nano- Wire would be optimized to achieve high sensibility and frequency response. To perform this optimization, the length of Nano- Wire g region and the thickness of absorber layer will be optimized. Silvaco software is used for simulation and optimization. The proposed structure includes a window profile is used for Nano- Wire.
Key-Words / Index Term :
Nanowire, Doping, Grating
References :
[1] P.S. Menon, S. Kalthom Tasirin, Ibrahim Ahmad and S. Fazlili Abdullah, “Optimization of Process Parameters for Si Lateral NANO- WIRE Nanowire” World Applied Sciences Journal 21 (Mathematical Applications in Engineering): 98-103, 2013.
[2] Souza, M., O. Bulteel, D. Flandre and M.A. Pavanello. Temperature and silicon film thickness
influence on the operation of lateral SOI NANO- WIRE Nanowires for detection of short wavelength, J.Integrated Circuits and Systems, 6(1): 107-113, 2011.
[3] Ehsan, A.A., Shaari, S., Majlis, B.Y.(2001) Silicon Planar p-i-n Nanowire for OEIC. IEEE Nat’l. Symp. on Microelectronics:316.
[4] Menon P.S., Ahmad M. H. F., Tugi A., Ehsan A. A. and Shaari S. (2003). Dark Current-Voltage(I-V) Characteristic of a Silicon NANO- WIRE Lateral Nanowire. IEEE National Symposium on Microelectronics : 207-210.
[5] Menon P.S. and Shaari S. (2003). The Effectof Intrinsic Region Width Variance on the Responsivity and Current-Voltage(IV) Characteristics of a Silicon Lateral NANO- WIRE Nanowire. IMEN – Procs. on Photonics: Planar Waveguide and Fiber Based Opt. Comm.Dev. 1: 76-79.
[6] Menon, P.S., Pembangunan diodfoto planar p-i-n silikon (Development of silicon-based p-i-n Nanowire), MSc Thesis. Universiti KebangsaanMalaysia, 2013.
[7] Menon, P.S. and S. Shaari, 2005. Surface versus lateral illumination effects on an interdigitated Si planar NANO- WIRE Nanowire. Proceedings of the SPIE Symposium on Optics and Photonics: Infrared and Photoelectronic Imagers and Detector Devices, 2005, San Diego, USA, 5881: art. no. 58810S, pp: 1-8.
[8] Jang, J.H., G. Cueva, D.C. Dumka, W.E. Hoke
P.J. Lemonias and I. Adesida, 2001. Long-Wavelength In0.53Ga0.47As Metamorphic p-i-n Nanowire on GaAs Subtrates. IEEE Photonics Technology Letters, 3(2):